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Pairwise Sequence Alignment

● A way to find similarities between sequences

● Widely used in Bioinformatics for DNA and protein sequences

● The example above is global sequence alignment which is the main focus.
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Global Sequence Alignment

● It’s a 2-step algorithm using dynamic 
programming score matrix
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Global Sequence Alignment

● It’s a 2-step algorithm using dynamic 
programming score matrix

1. Score matrix calculation
○ Using the equation from top-left to bottom-right cell

𝑆 𝑖, 𝑗 = 𝑚𝑎𝑥 )
𝑆 𝑖 − 1, 𝑗 + 𝑔𝑎𝑝
𝑆 𝑖 − 1, 𝑗 − 1 + (𝑚𝑖𝑠)𝑚𝑎𝑡𝑐ℎ
𝑆 𝑖, 𝑗 − 1 + 𝑔𝑎𝑝
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Global Sequence Alignment

● It’s a 2-step algorithm using dynamic 
programming score matrix

1. Score matrix calculation
○ Using the equation from top-left to bottom-right cell

𝑆 𝑖, 𝑗 = 𝑚𝑎𝑥 )
𝑆 𝑖 − 1, 𝑗 + 𝑔𝑎𝑝
𝑆 𝑖 − 1, 𝑗 − 1 + (𝑚𝑖𝑠)𝑚𝑎𝑡𝑐ℎ
𝑆 𝑖, 𝑗 − 1 + 𝑔𝑎𝑝

○ Storing the survivor path at every cell Memory of 
size O(N^2) for trace-back information
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Global Sequence Alignment

● It’s a 2-step algorithm using dynamic 
programming score matrix

1. Score matrix calculation
○ Using the equation from top-left to bottom-right cell

𝑆 𝑖, 𝑗 = 𝑚𝑎𝑥 )
𝑆 𝑖 − 1, 𝑗 + 𝑔𝑎𝑝
𝑆 𝑖 − 1, 𝑗 − 1 + (𝑚𝑖𝑠)𝑚𝑎𝑡𝑐ℎ
𝑆 𝑖, 𝑗 − 1 + 𝑔𝑎𝑝

○ Storing the survivor path at every cell Memory of 
size O(N^2) for trace-back information
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Global Sequence Alignment

● It’s a 2-step algorithm using dynamic 
programming score matrix

1. Score matrix calculation
○ Using the equation from top-left to bottom-right cell

𝑆 𝑖, 𝑗 = 𝑚𝑎𝑥 )
𝑆 𝑖 − 1, 𝑗 + 𝑔𝑎𝑝
𝑆 𝑖 − 1, 𝑗 − 1 + (𝑚𝑖𝑠)𝑚𝑎𝑡𝑐ℎ
𝑆 𝑖, 𝑗 − 1 + 𝑔𝑎𝑝

○ Storing the survivor path at every cell Memory of 
size O(N^2) for trace-back information
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Global Sequence Alignment

● It’s a 2-step algorithm using dynamic 
programming score matrix

1. Score matrix calculation
○ Using the equation from top-left to bottom-right cell

𝑆 𝑖, 𝑗 = 𝑚𝑎𝑥 )
𝑆 𝑖 − 1, 𝑗 + 𝑔𝑎𝑝
𝑆 𝑖 − 1, 𝑗 − 1 + (𝑚𝑖𝑠)𝑚𝑎𝑡𝑐ℎ
𝑆 𝑖, 𝑗 − 1 + 𝑔𝑎𝑝

○ Storing the survivor path at every cell Memory of 
size O(N^2) for trace-back information
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Global Sequence Alignment

● It’s a 2-step algorithm using dynamic 
programming score matrix

2. Path trace back
○ Tracing back the survivor path from bottom-right to 

top-left to find the alignment

AGCAT_
CG_ATA
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Overview
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● Motivation
● Prior Works on Hardware acceleration
● Wavefront Skipping Approach
● Benefits of Wavefront Skipping in Global Alignment
● Trace back Memory Mapping
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Motivation

● Pairwise sequence alignment is one of the most costly kernels in all of 
bioinformatics

○ Dominates most of the runtime of many applications, can be up to 80% 

● Wavefront parallelism is one approach to accelerate DP matrix alignment by 
exploiting parallelism of anti-diagonal independent elements 
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Prior Works on Hardware acceleration

● LOGAN is a Multi-GPU implementation of pairwise 
sequence alignment

● Exploits wavefront parallelism by computing anti-
diagonal cells in parallel

● 3 wavefront buffers in global memory to avoid shared 
memory bottleneck in long sequences

15(Zeni et al., IPDPS 2020)



Prior Works on Hardware acceleration

● Wavefronts are divided into segments and threads 
calculate each segment in an iteration of a loop.

○ Not restricted by sequence length

● LOGAN calculates final score of the alignment for 
long sequences with high performance

● LOGAN ignores trace back step and doesn’t find the 
actual alignment.

16(Zeni et al., IPDPS 2020)
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Wavefront Skipping Approach

● The same wavefront parallelism approach 
○ Synchronization after writing each wavefront
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Wavefront Skipping Approach

● The same wavefront parallelism approach 
○ Synchronization after writing each wavefront
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Wavefront Skipping Approach

● The same wavefront parallelism approach 
○ Synchronization after writing each wavefront

● Skipping some wavefronts while keeping 2 
consecutive ones at each step

○ No need to synchronization for wavefronts not written
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Wavefront Skipping Approach

● The same wavefront parallelism approach 
○ Synchronization after writing each wavefront

● Skipping some wavefronts while keeping 2 
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Wavefront Skipping Approach

● The same wavefront parallelism approach 
○ Synchronization after writing each wavefront

● Skipping some wavefronts while keeping 2 
consecutive ones at each step

○ No need to synchronization for wavefronts not written
○ More complex dependency
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Wavefront Skipping Approach

● The same wavefront parallelism approach 
○ Synchronization after writing each wavefront

● Skipping some wavefronts while keeping 2 
consecutive ones at each step

○ No need to synchronization for wavefronts not written
○ More complex dependency

● Complexity increases with larger number of 
skipped wavefronts (K)
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Wavefront Skipping Approach

● Avoiding the complexity by storing skipped 
wavefronts in shared memory

● Converting some of GM synchronizations to 
SM synchronizations which are less expensive

● Restriction to sequence length due to the 
limited size of the shared memory
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Wavefront Skipping Approach

● The segmentation approach used in LOGAN 
can be employed
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Wavefront Skipping Approach

● The segmentation approach used in LOGAN 
can be employed

● The results can be overwritten to the same 
buffers.

○ Less buffers than LOGAN needed

● The last column should be stored 

27



Wavefront Skipping Approach

● The segmentation approach used in LOGAN 
can be employed

● The results can be overwritten to the same 
buffers.

○ Less buffers than LOGAN needed

● The last column should be stored 

28



Wavefront Skipping Approach

● The segmentation approach used in LOGAN 
can be employed

● The results can be overwritten to the same 
buffers.

○ Less buffers than LOGAN needed

● The last column should be stored 

● Shared memory depends on segment length.
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Benefits of Wavefront Skipping in Global Alignment

● Reduction in the number of GM synchronizations and replacing them 
with SM synchronizations

● Reduction in global memory access

● Less buffers needed to be allocated in global memory
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Trace back Memory Mapping

● In order to have coalescing access, the pointers 
should be indexed consecutively in each wavefront
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Trace back Memory Mapping

● In order to have coalescing access, the pointers 
should be indexed consecutively in each wavefront
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Trace back Memory Mapping

● In order to have coalescing access, the pointers 
should be indexed consecutively in each wavefront
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Trace-back Memory Mapping

● In order to have coalescing access, the pointers 
should be indexed consecutively in each wavefront
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Trace back Memory Mapping

● In order to have coalescing access, the pointers 
should be indexed consecutively in each wavefront

● Each pointer is stored in 2 bits. Therefore, each byte 
has 4 pointers.

37

0 2 5 9

1 4 8 12

3 7 11 14

6 10 13 15

B0

Trace back matrix

B1

B3

B2

Memory Layout



Trace-back Memory Mapping

● In order to have coalescing access, the pointers 
should be indexed consecutively in each wavefront

● Each pointer is stored in 2 bits. Therefore, each byte 
has 4 pointers.

● Assuming 𝐼 as the pointer index, it can be stored at 
the following address

𝐼
4 . 𝐼%4

○ Represented as (byte address).(byte offset from 0 to 3)
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Trace back Memory Mapping

● Example
𝑇ℎ𝑟𝑒𝑎𝑑𝑠# = 4
𝑇𝑟𝑎𝑐𝑒 𝑏𝑎𝑐𝑘 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑖𝑧𝑒 = 30×30 ÷ 4 = 225
𝑊𝑎𝑣𝑒𝑓𝑟𝑜𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 = 24
𝑆𝑡𝑟𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 = 304

𝑀𝑎𝑝𝑝𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛:
𝐼
4
. 𝐼%4
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Trace back Memory Mapping

● Example
𝑇ℎ𝑟𝑒𝑎𝑑𝑠# = 4
𝑇𝑟𝑎𝑐𝑒 𝑏𝑎𝑐𝑘 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑖𝑧𝑒 = 30×30 ÷ 4 = 225
𝑊𝑎𝑣𝑒𝑓𝑟𝑜𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 = 24
𝑆𝑡𝑟𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 = 304

𝑀𝑎𝑝𝑝𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛:
𝐼
4
. 𝐼%4
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Trace back Memory Mapping

● Example
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● Example
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Trace back Memory Mapping

● Example
𝑇ℎ𝑟𝑒𝑎𝑑𝑠# = 4
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Trace back Memory Mapping

● Example
𝑇ℎ𝑟𝑒𝑎𝑑𝑠# = 4
𝑇𝑟𝑎𝑐𝑒 𝑏𝑎𝑐𝑘 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑖𝑧𝑒 = 30×30 ÷ 4 = 225
𝑊𝑎𝑣𝑒𝑓𝑟𝑜𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 = 24
𝑆𝑡𝑟𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 = 304

𝑀𝑎𝑝𝑝𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛:
𝐼
4
. 𝐼%4

● Threads want to access the same byte that 
implies using atomic instructions
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Trace back Memory Mapping

● Instead, we can use another mapping
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𝐼
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MS: Matrix size
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Trace back Memory Mapping

● Instead, we can use another mapping
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Trace back Memory Mapping

● Instead, we can use another mapping
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Trace back Memory Mapping

● Instead, we can use another mapping

𝐼%𝑀𝑆 .
𝐼
𝑀𝑆

MS: Matrix size
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Trace back Memory Mapping

● Example
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Trace back Memory Mapping

● Example
𝑇ℎ𝑟𝑒𝑎𝑑𝑠# = 4
𝑇𝑟𝑎𝑐𝑒 𝑏𝑎𝑐𝑘 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑖𝑧𝑒 = 30×30 ÷ 4 = 225
𝑊𝑎𝑣𝑒𝑓𝑟𝑜𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 = 24
𝑆𝑡𝑟𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 = 304

𝑀𝑎𝑝𝑝𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝐼%𝑀𝑆 .
𝐼
𝑀𝑆

● Using this mapping function for different 
sequence lengths, speedup of 2.5x can be 
gained for the entire alignment.
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Conclusion

● Pairwise sequence alignment is a basic building-block in Bioinformatics.

● GPU implementation of this algorithm is based on wavefront parallelism.

● Skipping some wavefronts can be beneficial.

● Most of the works done on GPU haven’t implemented the trace-back step.

● Using a proper mapping function, trace-back can be done efficiently.
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Thank you!
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