
AACBB
ACCELERATOR ARCHITECTURE IN COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

Skipping Wavefronts in Pairwise Alignment

Alireza Mohammadidoost
PhD Student

UC San Diego

Supervisor: Prof. Yatish Turakhia

16/18/2022

Overview

● Pairwise Sequence Alignment
● Global Sequence Alignment
● Motivation
● Prior Works on Hardware acceleration
● Wavefront Skipping Approach
● Benefits of Wavefront Skipping in Global Alignment
● Trace back Memory Mapping

2

Pairwise Sequence Alignment

● A way to find similarities between sequences

● Widely used in Bioinformatics for DNA and protein sequences

● The example above is global sequence alignment which is the main focus.

A G C A T

C G A T A

A G C A T -

C G - A T A

Overview

● Pairwise Sequence Alignment
● Global Sequence Alignment
● Motivation
● Prior Works on Hardware acceleration
● Wavefront Skipping Approach
● Benefits of Wavefront Skipping in Global Alignment
● Trace back Memory Mapping

4

Global Sequence Alignment

● It’s a 2-step algorithm using dynamic
programming score matrix

5

* A G C A T

*

C

G

A

T

A

Global Sequence Alignment

● It’s a 2-step algorithm using dynamic
programming score matrix

1. Score matrix calculation
○ Using the equation from top-left to bottom-right cell

𝑆 𝑖, 𝑗 = 𝑚𝑎𝑥)
𝑆 𝑖 − 1, 𝑗 + 𝑔𝑎𝑝
𝑆 𝑖 − 1, 𝑗 − 1 + (𝑚𝑖𝑠)𝑚𝑎𝑡𝑐ℎ
𝑆 𝑖, 𝑗 − 1 + 𝑔𝑎𝑝

6

* A G C A T

* 0 -1

C -1 0

G

A

T

A

Global Sequence Alignment

● It’s a 2-step algorithm using dynamic
programming score matrix

1. Score matrix calculation
○ Using the equation from top-left to bottom-right cell

𝑆 𝑖, 𝑗 = 𝑚𝑎𝑥)
𝑆 𝑖 − 1, 𝑗 + 𝑔𝑎𝑝
𝑆 𝑖 − 1, 𝑗 − 1 + (𝑚𝑖𝑠)𝑚𝑎𝑡𝑐ℎ
𝑆 𝑖, 𝑗 − 1 + 𝑔𝑎𝑝

○ Storing the survivor path at every cell Memory of
size O(N^2) for trace-back information

7

* A G C A T

* 0 -1

C -1 0

G

A

T

A

Global Sequence Alignment

● It’s a 2-step algorithm using dynamic
programming score matrix

1. Score matrix calculation
○ Using the equation from top-left to bottom-right cell

𝑆 𝑖, 𝑗 = 𝑚𝑎𝑥)
𝑆 𝑖 − 1, 𝑗 + 𝑔𝑎𝑝
𝑆 𝑖 − 1, 𝑗 − 1 + (𝑚𝑖𝑠)𝑚𝑎𝑡𝑐ℎ
𝑆 𝑖, 𝑗 − 1 + 𝑔𝑎𝑝

○ Storing the survivor path at every cell Memory of
size O(N^2) for trace-back information

8

* A G C A T

* 0 -1 -2

C -1 0

G -2

A

T

A

Global Sequence Alignment

● It’s a 2-step algorithm using dynamic
programming score matrix

1. Score matrix calculation
○ Using the equation from top-left to bottom-right cell

𝑆 𝑖, 𝑗 = 𝑚𝑎𝑥)
𝑆 𝑖 − 1, 𝑗 + 𝑔𝑎𝑝
𝑆 𝑖 − 1, 𝑗 − 1 + (𝑚𝑖𝑠)𝑚𝑎𝑡𝑐ℎ
𝑆 𝑖, 𝑗 − 1 + 𝑔𝑎𝑝

○ Storing the survivor path at every cell Memory of
size O(N^2) for trace-back information

9

* A G C A T

* 0 -1 -2 -3 -4

C -1 0 -1 -1

G -2 -1 1

A -3 -1

T -4

A

Global Sequence Alignment

● It’s a 2-step algorithm using dynamic
programming score matrix

1. Score matrix calculation
○ Using the equation from top-left to bottom-right cell

𝑆 𝑖, 𝑗 = 𝑚𝑎𝑥)
𝑆 𝑖 − 1, 𝑗 + 𝑔𝑎𝑝
𝑆 𝑖 − 1, 𝑗 − 1 + (𝑚𝑖𝑠)𝑚𝑎𝑡𝑐ℎ
𝑆 𝑖, 𝑗 − 1 + 𝑔𝑎𝑝

○ Storing the survivor path at every cell Memory of
size O(N^2) for trace-back information

10

* A G C A T

* 0 -1 -2 -3 -4 -5

C -1 0 -1 -1 -2 -3

G -2 -1 1 0 -1 -2

A -3 -1 0 1 1 0

T -4 -2 -1 0 1 2

A -5 -3 -2 -1 1 1

Global Sequence Alignment

● It’s a 2-step algorithm using dynamic
programming score matrix

2. Path trace back
○ Tracing back the survivor path from bottom-right to

top-left to find the alignment

AGCAT_
CG_ATA

11

* A G C A T

*

C

G

A

T

A

Overview

● Pairwise Sequence Alignment
● Global Sequence Alignment
● Motivation
● Prior Works on Hardware acceleration
● Wavefront Skipping Approach
● Benefits of Wavefront Skipping in Global Alignment
● Trace back Memory Mapping

12

Motivation

● Pairwise sequence alignment is one of the most costly kernels in all of
bioinformatics

○ Dominates most of the runtime of many applications, can be up to 80%

● Wavefront parallelism is one approach to accelerate DP matrix alignment by
exploiting parallelism of anti-diagonal independent elements

13

Overview

● Pairwise Sequence Alignment
● Global Sequence Alignment
● Motivation
● Prior Works on Hardware acceleration
● Wavefront Skipping Approach
● Benefits of Wavefront Skipping in Global Alignment
● Trace back Memory Mapping

14

Prior Works on Hardware acceleration

● LOGAN is a Multi-GPU implementation of pairwise
sequence alignment

● Exploits wavefront parallelism by computing anti-
diagonal cells in parallel

● 3 wavefront buffers in global memory to avoid shared
memory bottleneck in long sequences

15(Zeni et al., IPDPS 2020)

Prior Works on Hardware acceleration

● Wavefronts are divided into segments and threads
calculate each segment in an iteration of a loop.

○ Not restricted by sequence length

● LOGAN calculates final score of the alignment for
long sequences with high performance

● LOGAN ignores trace back step and doesn’t find the
actual alignment.

16(Zeni et al., IPDPS 2020)

Overview

● Pairwise Sequence Alignment
● Global Sequence Alignment
● Motivation
● Prior Works on Hardware acceleration
● Wavefront Skipping Approach
● Benefits of Wavefront Skipping in Global Alignment
● Trace back Memory Mapping

17

Wavefront Skipping Approach

● The same wavefront parallelism approach
○ Synchronization after writing each wavefront

18

Global memory

GM synchronization

Wavefront Skipping Approach

● The same wavefront parallelism approach
○ Synchronization after writing each wavefront

19

Global memory

GM synchronization

Wavefront Skipping Approach

● The same wavefront parallelism approach
○ Synchronization after writing each wavefront

20

Global memory

GM synchronization

Wavefront Skipping Approach

● The same wavefront parallelism approach
○ Synchronization after writing each wavefront

● Skipping some wavefronts while keeping 2
consecutive ones at each step

○ No need to synchronization for wavefronts not written

21

Global memory

GM synchronization

Wavefront Skipping Approach

● The same wavefront parallelism approach
○ Synchronization after writing each wavefront

● Skipping some wavefronts while keeping 2
consecutive ones at each step

○ No need to synchronization for wavefronts not written

22

Global memory

GM synchronization

Wavefront Skipping Approach

● The same wavefront parallelism approach
○ Synchronization after writing each wavefront

● Skipping some wavefronts while keeping 2
consecutive ones at each step

○ No need to synchronization for wavefronts not written
○ More complex dependency

23

Global memory

GM synchronization

Wavefront Skipping Approach

● The same wavefront parallelism approach
○ Synchronization after writing each wavefront

● Skipping some wavefronts while keeping 2
consecutive ones at each step

○ No need to synchronization for wavefronts not written
○ More complex dependency

● Complexity increases with larger number of
skipped wavefronts (K)

24

Global memory

GM synchronization

Wavefront Skipping Approach

● Avoiding the complexity by storing skipped
wavefronts in shared memory

● Converting some of GM synchronizations to
SM synchronizations which are less expensive

● Restriction to sequence length due to the
limited size of the shared memory

25

Global memory

GM synchronization

Shared memory

SM synchronization

Wavefront Skipping Approach

● The segmentation approach used in LOGAN
can be employed

26

Wavefront Skipping Approach

● The segmentation approach used in LOGAN
can be employed

● The results can be overwritten to the same
buffers.

○ Less buffers than LOGAN needed

● The last column should be stored

27

Wavefront Skipping Approach

● The segmentation approach used in LOGAN
can be employed

● The results can be overwritten to the same
buffers.

○ Less buffers than LOGAN needed

● The last column should be stored

28

Wavefront Skipping Approach

● The segmentation approach used in LOGAN
can be employed

● The results can be overwritten to the same
buffers.

○ Less buffers than LOGAN needed

● The last column should be stored

● Shared memory depends on segment length.

29

Overview

● Pairwise Sequence Alignment
● Global Sequence Alignment
● Motivation
● Prior Works on Hardware acceleration
● Wavefront Skipping Approach
● Benefits of Wavefront Skipping in Global Alignment
● Trace back Memory Mapping

30

Benefits of Wavefront Skipping in Global Alignment

● Reduction in the number of GM synchronizations and replacing them
with SM synchronizations

● Reduction in global memory access

● Less buffers needed to be allocated in global memory

31

Overview

● Pairwise Sequence Alignment
● Global Sequence Alignment
● Motivation
● Prior Works on Hardware acceleration
● Wavefront Skipping Approach
● Benefits of Wavefront Skipping in Global Alignment
● Trace back Memory Mapping

32

Trace back Memory Mapping

● In order to have coalescing access, the pointers
should be indexed consecutively in each wavefront

33

0

Trace back matrix

Trace back Memory Mapping

● In order to have coalescing access, the pointers
should be indexed consecutively in each wavefront

34

0 2

1

Trace back matrix

Trace back Memory Mapping

● In order to have coalescing access, the pointers
should be indexed consecutively in each wavefront

35

0 2 5

1 4

3

Trace back matrix

Trace-back Memory Mapping

● In order to have coalescing access, the pointers
should be indexed consecutively in each wavefront

36

0 2 5 9

1 4 8 12

3 7 11 14

6 10 13 15

Trace back matrix

Trace back Memory Mapping

● In order to have coalescing access, the pointers
should be indexed consecutively in each wavefront

● Each pointer is stored in 2 bits. Therefore, each byte
has 4 pointers.

37

0 2 5 9

1 4 8 12

3 7 11 14

6 10 13 15

B0

Trace back matrix

B1

B3

B2

Memory Layout

Trace-back Memory Mapping

● In order to have coalescing access, the pointers
should be indexed consecutively in each wavefront

● Each pointer is stored in 2 bits. Therefore, each byte
has 4 pointers.

● Assuming 𝐼 as the pointer index, it can be stored at
the following address

𝐼
4 . 𝐼%4

○ Represented as (byte address).(byte offset from 0 to 3)

38

0 2 5 9

1 4 8 12

3 7 11 14

6 10 13 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

B0

Trace back matrix

B1

B3

B2

Memory Layout

Trace back Memory Mapping

● Example
𝑇ℎ𝑟𝑒𝑎𝑑𝑠# = 4
𝑇𝑟𝑎𝑐𝑒 𝑏𝑎𝑐𝑘 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑖𝑧𝑒 = 30×30 ÷ 4 = 225
𝑊𝑎𝑣𝑒𝑓𝑟𝑜𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 = 24
𝑆𝑡𝑟𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 = 304

𝑀𝑎𝑝𝑝𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛:
𝐼
4
. 𝐼%4

39

30
30

300

324

304

319

24
Iter0

Iter1

Iter2

Iter3

Th0 Th1 Th2 Th3

Matrix indexes

Trace back Memory Mapping

● Example
𝑇ℎ𝑟𝑒𝑎𝑑𝑠# = 4
𝑇𝑟𝑎𝑐𝑒 𝑏𝑎𝑐𝑘 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑖𝑧𝑒 = 30×30 ÷ 4 = 225
𝑊𝑎𝑣𝑒𝑓𝑟𝑜𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 = 24
𝑆𝑡𝑟𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 = 304

𝑀𝑎𝑝𝑝𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛:
𝐼
4
. 𝐼%4

40

304 305 306 307

30
30

300

324

304

319

24
Iter0

Iter1

Iter2

Iter3

Th0 Th1 Th2 Th3

Matrix indexes

Trace back Memory Mapping

● Example
𝑇ℎ𝑟𝑒𝑎𝑑𝑠# = 4
𝑇𝑟𝑎𝑐𝑒 𝑏𝑎𝑐𝑘 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑖𝑧𝑒 = 30×30 ÷ 4 = 225
𝑊𝑎𝑣𝑒𝑓𝑟𝑜𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 = 24
𝑆𝑡𝑟𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 = 304

𝑀𝑎𝑝𝑝𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛:
𝐼
4
. 𝐼%4

41

304 305 306 307

308 309 310 311

30
30

300

324

304

319

24
Iter0

Iter1

Iter2

Iter3

Th0 Th1 Th2 Th3

Matrix indexes

Trace back Memory Mapping

● Example
𝑇ℎ𝑟𝑒𝑎𝑑𝑠# = 4
𝑇𝑟𝑎𝑐𝑒 𝑏𝑎𝑐𝑘 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑖𝑧𝑒 = 30×30 ÷ 4 = 225
𝑊𝑎𝑣𝑒𝑓𝑟𝑜𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 = 24
𝑆𝑡𝑟𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 = 304

𝑀𝑎𝑝𝑝𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛:
𝐼
4
. 𝐼%4

42

304 305 306 307

308 309 310 311

312 313 314 315

30
30

300

324

304

319

24
Iter0

Iter1

Iter2

Iter3

Th0 Th1 Th2 Th3

Matrix indexes

Trace back Memory Mapping

● Example
𝑇ℎ𝑟𝑒𝑎𝑑𝑠# = 4
𝑇𝑟𝑎𝑐𝑒 𝑏𝑎𝑐𝑘 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑖𝑧𝑒 = 30×30 ÷ 4 = 225
𝑊𝑎𝑣𝑒𝑓𝑟𝑜𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 = 24
𝑆𝑡𝑟𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 = 304

𝑀𝑎𝑝𝑝𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛:
𝐼
4
. 𝐼%4

43

304 305 306 307

308 309 310 311

312 313 314 315

316 317 318 319

30
30

300

324

304

319

24
Iter0

Iter1

Iter2

Iter3

Th0 Th1 Th2 Th3

Matrix indexes

Trace back Memory Mapping

● Example
𝑇ℎ𝑟𝑒𝑎𝑑𝑠# = 4
𝑇𝑟𝑎𝑐𝑒 𝑏𝑎𝑐𝑘 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑖𝑧𝑒 = 30×30 ÷ 4 = 225
𝑊𝑎𝑣𝑒𝑓𝑟𝑜𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 = 24
𝑆𝑡𝑟𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 = 304

𝑀𝑎𝑝𝑝𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛:
𝐼
4
. 𝐼%4

● Threads want to access the same byte that
implies using atomic instructions

44

76 76 76 76

77 77 77 77

78 78 78 78

79 79 79 79

30
30

300

324

304

319

24
Iter0

Iter1

Iter2

Iter3

Th0 Th1 Th2 Th3

Byte indexes

Trace back Memory Mapping

● Instead, we can use another mapping

𝐼%𝑀𝑆 .
𝐼
𝑀𝑆

MS: Matrix size

45

0

1

MS-1

Memory Layout

…

Trace back Memory Mapping

● Instead, we can use another mapping

𝐼%𝑀𝑆 .
𝐼
𝑀𝑆

MS: Matrix size

46

0

1

MS-1

Memory Layout

…

Trace back Memory Mapping

● Instead, we can use another mapping

𝐼%𝑀𝑆 .
𝐼
𝑀𝑆

MS: Matrix size

47

0

1

MS-1

Memory Layout

…

Trace back Memory Mapping

● Instead, we can use another mapping

𝐼%𝑀𝑆 .
𝐼
𝑀𝑆

MS: Matrix size

48

0

1

MS-1

Memory Layout

…

Trace back Memory Mapping

● Instead, we can use another mapping

𝐼%𝑀𝑆 .
𝐼
𝑀𝑆

MS: Matrix size

49

0

1

MS-1

Memory Layout

…

Trace back Memory Mapping

● Example
𝑇ℎ𝑟𝑒𝑎𝑑𝑠# = 4
𝑇𝑟𝑎𝑐𝑒 𝑏𝑎𝑐𝑘 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑖𝑧𝑒 = 30×30 ÷ 4 = 225
𝑊𝑎𝑣𝑒𝑓𝑟𝑜𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 = 24
𝑆𝑡𝑟𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 = 304

𝑀𝑎𝑝𝑝𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝐼%𝑀𝑆 .
𝐼
𝑀𝑆

50

304 305 306 307

308 309 310 311

312 313 314 315

316 317 318 319

Iter0

Iter1

Iter2

Iter3

Th0 Th1 Th2 Th3

Matrix indexes

Trace back Memory Mapping

● Example
𝑇ℎ𝑟𝑒𝑎𝑑𝑠# = 4
𝑇𝑟𝑎𝑐𝑒 𝑏𝑎𝑐𝑘 𝑚𝑎𝑡𝑟𝑖𝑥 𝑠𝑖𝑧𝑒 = 30×30 ÷ 4 = 225
𝑊𝑎𝑣𝑒𝑓𝑟𝑜𝑛𝑡 𝐼𝑛𝑑𝑒𝑥 = 24
𝑆𝑡𝑟𝑎𝑡 𝑖𝑛𝑑𝑒𝑥 = 304

𝑀𝑎𝑝𝑝𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝐼%𝑀𝑆 .
𝐼
𝑀𝑆

● Using this mapping function for different
sequence lengths, speedup of 2.5x can be
gained for the entire alignment.

51

304 305 306 307

308 309 310 311

312 313 314 315

316 317 318 319

Iter0

Iter1

Iter2

Iter3

Th0 Th1 Th2 Th3

Matrix indexes

79 80 81 82

83 84 85 86

87 88 89 90

91 92 93 94

Iter0

Iter1

Iter2

Iter3

Th0 Th1 Th2 Th3

Byte indexes

Conclusion

● Pairwise sequence alignment is a basic building-block in Bioinformatics.

● GPU implementation of this algorithm is based on wavefront parallelism.

● Skipping some wavefronts can be beneficial.

● Most of the works done on GPU haven’t implemented the trace-back step.

● Using a proper mapping function, trace-back can be done efficiently.

52

Thank you!

53

