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Sequence Data is Growing Exponentially

Computation Isn’t
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Cost To

• Sequence a human genome - $1k today (short reads, 30x coverage)
– $3k for long reads (10x coverage)
– $100 soon 

• Perform reference-based assembly of it - $15 (short reads)
• Perform de-novo assembly of it - $10k (long reads)

Computation is a growing fraction of genomics cost 
(scaling slower than sequencing)

Computation cost already dominates some tasks 
(e.g., de-novo assembly).

https://hpcbio.illinois.edu/services-and-fees
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Many Demanding Computational Problems



Phylogenomics: Inferring phylogenetic relationships from genomes
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# species # rooted trees
3 3

6 945

9 2.0 x 106

30 4.9 x 1038

2.3 x 106 ???

270 CPU years required for 

solving the topology of 48 birds 

[Jarvis et al, Science 2014]

Open questions
1. What is the tree of life for 

~2.3 million extant species?

2. What is the best method to 

infer this tree from genomes?

3 possible trees

for 3 bird species

Extant Tree of life has 2.3 

million species!
OpenTreeOfLife.org



Phylogenomics: Inferring phylogenetic relationships from genomes
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ü X X

# species # rooted trees
3 3

6 945

9 2.0 x 106

30 4.9 x 1038

2.3 x 106 ???

270 CPU years required for 

solving the topology of 48 birds 

[Jarvis et al, Science 2014]

Open questions
1. What is the tree of life for 

~2.3 million extant species?

2. What is the best method to 

infer this tree from genomes?

This topology 

was “resolved” 

only in 2007 

[Cannarozzi et al] 

with the help 

genomic data



Not Really a Tree – Incomplete Lineage Sorting

Deep coalescence
Have to go far back in time for 
genes to “coalesce” 
Gene can split before speciation

Luak Nakhleh, Trends in Ecology and Evolution 2003 Frederik Leliaert, European Journal of Phycology, 2014



Human-Chip-Gorilla-Orangutan

Gene Genealogy different than 
Species Phylogeny for 25% of 
genome

https://www.dailykos.com/stories/2016/6/10/1534820/-Incomplete-Lineage-Sorting-and-a-Non-Tree-View-of-Life



Identifying driver mutations in cancer
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1 1 1 1 1

1 1 1 1 1

1 1 0 0 0

0 0 0 1 1

0 0 0 1 0

Normal cell

Driver mutation

Passenger 
mutations

Tumor cells

Single-cell sequencing Tumor phylogeny

Inspired from [Jahn et al, Genome Biol. 2016]



Whole Genome Alignment

Rat v Mouse
Short matches filtered out

Cabanettes F, Klopp C. (2018) D-GENIES: dot plot large 
genomes in an interactive, efficient and simple way. PeerJ
6:e4958 https://doi.org/10.7717/peerj.4958

Insertion

Deletion

Match Mismatch

https://doi.org/10.7717/peerj.4958


Exon-based map of conserved synteny between the rat, human, and mouse genomes. 

Michael Brudno et al. Genome Res. 2004;14:685-692

Cold Spring Harbor Laboratory Press



Whole Genome Alignment

Apolipoprotein A1 geneEnhancer

Regions with sequence conservation

(Mayor et al. , 2000)



Memory and storage
• Genomic data doubling roughly 

every 14 months since 2013

• Exabyte of genomic data per year 
from 2025, surpassing Youtube
and Astronomy

• Open questions
1. How and where to store genomic data?
2. How to enable secure data sharing?
3. How to enable exabyte scale 

processing of genomic data?
16



Genome compression
• In general, genomic data is highly 

compressible

• Open questions:
1. How to enable lossless compression with a 

high compression rate?
2. How to enable lossy compression without 

affecting informatics?
3. How to enable fast compute on compressed 

data?

17

[Pavlichin et al, Bioinformatics 2013]

“Double power law” distribution => 
compressibility of variation data



Genome graphs
• Graphs as a way to represent common 

human genomic variation

• More representative - minimizes bias to 
a single reference

• More informative than a single “profile”

• Open questions:
1. How to build a genome graph?
2. How to align sequencing reads to a genome 

graph accurately?

18



Metagenomics and liquid biopsy
• Sequence reads from a environment 

sample (human gut, soil etc)

• Build a taxonomic profile of species 
(bacteria, virus, fungal, human, etc.) 
from reads

• Applications
1. Infectious disease (Karius Inc.)
2. Discover new natural products (Radiant 

Genomics)
3. Microbiome analysis and therapeutics 

(MicroBiome Therapeutics) 19

[taxonomer.iobio.io]
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Specialized Operations

Orders of Magnitude Speedup & Efficiency



Specialized Operations

Dynamic programming for gene sequence alignment (Smith-Waterman)

On 14nm CPU On 40nm Special Unit
35 ALU ops, 15 load/store 1 cycle (37x speedup)
37 cycles 3.1pJ (26,000x efficiency)
81nJ 300fJ for logic (remainder is memory)
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Accelerator Design is Guided by Cost

Arithmetic is Free
(particularly low-precision)

Memory is expensive

Communication is prohibitively expensive



Need to Understand Cost of Operations
And Communication

Operation: Energy (pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

Area (µm2)
36
67
137
1360
4184
282
3495
1640
7700
N/A
N/A

Energy numbers are from Mark Horowitz “Computing’s Energy Problem (and what we can do about it)”, ISSCC 2014
Area numbers are from synthesized result using Design Compiler under TSMC 45nm tech node. FP units used DesignWare Library.



Communication is Expensive, Be Small, Be Local

LPDDR DRAM
GB

On-Chip SRAM
MB

Local SRAM
KB

640pJ/word

50pJ/word

5pJ/word



Scaling of Communication
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DFMA 40nm DFMA 10nm Wire 40nm Wire 10nm

pJ

Keckler et al. Micro 2011.
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Most Speedup Comes from Parallelism

Enabled by Specialization



Inner-Loop Parallelism
Systolic Array to Compute DP Matrix
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Block 3

T
PE 0 PE 1 PE 2 PE 3

A G T C

FIFO

GG A

Tile Size (T) = 9

Darwin has 64 PEs per array

Communication: One-Way Nearest Neighbor

Synchronization: Lockstep

Memory: Store Traceback Pointer



Outer-Loop Parallelism
Compute Many DP Arrays at Once
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Darwin has 64 arrays
Comm & Sync – Master/Slave
Memory – Distribute problems – Read back traceback



Speedup for GACT

• Specialization 37x

• Inner-Loop Parallelism 63x

• Outer-Loop Parallelism 64x

• Total ~ 150,000x

• Darwin speedup is 15,000x because filtering doesn’t speed up as much 
as alignment.
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Specialization Provides Efficiency

Parallelism Converts Efficiency to Speedup
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The Algorithm often Has to Change



Algorithm-Architecture Co-Design for Darwin
Start with Graphmap

32

0.1 1 10 100 1000 10000 100000
Time/read (ms)

Filtration Alignment

Graphmap
~10K seeds
~440M hits

Filtration

Alignment

~3 hits

~1 hits

1. Graphmap (software)

1

Yatish Turakhia, Gill Bejerano, and William J. Dally. "Darwin: A Genomics Co-processor Provides up to 15,000 
X Acceleration on Long Read Assembly.”  ASPLOS 2018.



Algorithm-Architecture Co-Design for Darwin
Replace Graphmap with Hardware-Friendly Algorithms
Speed up Filtering by 100x, but 2.1x Slowdown Overall

0.1 1 10 100 1000 10000 100000
Time/read (ms)

Filtration Alignment

Graphmap
~10K seeds
~440M hits

Darwin
~2K seeds
~1M hits

Filtration
(D-SOFT)

Alignment
(GACT)

Filtration

Alignment
~3 hits

~1 hits

~1680 hits

~1 hits

2.1X slowdown

1. Graphmap (software)
2. Replace by D-SOFT and GACT 

(software)

1

2



Algorithm-Hardware Co-Design for Darwin
Accelerate Alighment – 380x Speedup

34

0.1 1 10 100 1000 10000 100000
Time/read (ms)

Filtration Alignment
1. Graphmap (software)
2. Replace by D-SOFT and GACT 

(software)
3. GACT hardware-acceleration

2.1X slowdown

380X speedup

1. Graphmap (software)
2. Replace by D-SOFT and GACT 

(software)
3. GACT hardware-acceleration

1

2

3



Algorithm-Hardware Co-Design for Darwin
4x Memory Parallelism – 3.9x Speeedup
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0.1 1 10 100 1000 10000 100000
Time/read (ms)
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DRAM
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2.1X slowdown

380X speedup

3.9X speedup

1. Graphmap (software)
2. Replace by D-SOFT and GACT 

(software)
3. GACT hardware-acceleration
4. Four DRAM channels for D-SOFT1

2

3

4



Algorithm-Hardware Co-Design for Darwin
Specialized Memory for D-Soft Bin Updates – 15.6x Speedup
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0.1 1 10 100 1000 10000 100000
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2.1X slowdown

380X speedup

3.9X speedup

15.6X speedup

1. Graphmap (software)
2. Replace by D-SOFT and GACT 

(software)
3. GACT hardware-acceleration
4. Four DRAM channels for D-SOFT
5. Move bin updates in D-SOFT to 

SRAM (ASIC)
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Algorithm-Hardware Co-Design for Darwin
Pipeline D-Soft and GACT – now completely D-Soft limited – 1.4x

Overall 15,000x
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Algorithm and Hardware Co-Design for Darwin-WGA

Seeding

Ungapped

Filtering

Extension

Seeding

Gapped

Filtering

Extension

1.3B Seeds 1.3B Seeds

14B Seed Hits 14B Seed Hits

1.2M Anchors~300k Anchors

~700k Alignments~150k Alignments

Yatish Turakhia*, Sneha D. Goenka*, Gill Bejerano, and William J. Dally. "Darwin-WGA: A Co-processor 

Provides Increased Sensitivity in Whole Genome Alignments with High Speedup”  HPCA 2019.
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Memory Dominates
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Memory dominates power and area



Darwin: ASIC overview
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Configuration Area (mm2)
(40nm TSMC)

Power (W)
(40nm TSMC)

GACT Logic 64 x (64PE array) 17.6 1.04

Memory 64 x (64PE x 2KB/PE) 68.0 3.36

D-SOFT Logic 2xSPL + NoC + 16xUBL 6.2 0.41

Bin-count SRAM 16 banks x 4MB/bank 300.8 7.84

NZ-bin SRAM 16 x 256KB 19.5 0.96

DRAM LPDDR4-2400 4 x 32GB - 1.64

TOTAL 412.1 15.25

Darwin

Power and Area dominated by memory
GACT: 79% Area, 76% Power
D-SOFT: 98% Area, 96% Power
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Algorithms must be optimized to use memory 
efficiently



GACT Alignment

• 15M Reads, 10k bases each, ~2k hits each
– ~300T Alignments to be done
– Additional parallelism within each alignment

• But long reads have large (10M) memory footprint
• Solution: GACT (Tiling)  



GACT Alignment

• 15M Reads, 10k bases each, ~2k hits each
– ~300T Alignments to be done
– Additional parallelism within each alignment

• But long reads have large (10M) memory footprint
• Solution: GACT (Tiling)  

Darwin GACT hardware
4k PEs - 64 PEs per Array x 64 Arrays
~50 operations per cycle per PE
200k operations per cycle
Specialized memory
150,000x speedup vs CPU
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On-Chip Memory 
Cost per Bit is 10-100x Commodity DRAM

And It’s Often Less Expensive



D-SOFT: Algorithm Overview
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D-SOFT: Algorithm Overview
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D-SOFT: Algorithm Overview
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D-SOFT: Algorithm Overview
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D-SOFT: Algorithm Overview
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D-SOFT: Algorithm Overview
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D-SOFT: Algorithm Overview

AGCTTTCCCTACGTAGCTGCATCTATTTCTCGTATTTAGC

GT
GC
TT
GG
AT
AT
A

Parameters:

k: seed size
N: number of seeds
h: threshold on non-overlapping bases 

B: bin size (number of bases, fixed to 128) 

(k=2, N=6, h=6)
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D-SOFT: Hardware-acceleration
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Cost has a Time Component

C = T(B1N1 + B2N2 + … + P)

T B1 N1 B2 N2 C
Darwin Filter 1 100 64M 1 128G 134G
All DRAM 15.6 1 128G 1,997G
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Platforms for Acceleration



GPUs Provide:
• High-Bandwidth, Hierarchical Memory System

• Can be configured to match application

• Programmable Control and Operand Delivery

• Simple places to bolt on Domain-Specific Hardware
• As instructions or memory clients

56



Volta V100
21B xtors |  TSMC 12nm FFN  |  815mm2

5,120 CUDA cores
7.8 FP64 TFLOPS  |  15.7 FP32 TFLOPS
125 Tensor TFLOPS
20MB SM RF  |  16MB Cache  
32GB HBM2 @ 900 GB/s
300 GB/s NVLink
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Tensor Core

D = AB + C

D = 

FP16 FP16 FP16 or FP32

A0,0 A0,1 A0,2 A0,3

A1,0 A1,1 A1,2 A1,3

A2,0 A2,1 A2,2 A2,3

A3,0 A3,1 A3,2 A3,3

B0,0 B0,1 B0,2 B0,3

B1,0 B1,1 B1,2 B1,3

B2,0 B2,1 B2,2 B2,3

B3,0 B3,1 B3,2 B3,3

C0,0 C0,1 C0,2 C0,3

C1,0 C1,1 C1,2 C1,3

C2,0 C2,1 C2,2 C2,3

C3,0 C3,1 C3,2 C3,3



Specialized Instructions Amortize Overhead

Operation Ops Energy** Overhead*
HFMA 2 1.5pJ 2000%
HDP4A 8 6.0pJ 500%
HMMA 128 110pJ 27%

*Overhead is instruction fetch, decode, and operand fetch – 30pJ
**Energy numbers from 45nm process



(map force     
(pairs 

particles)

Mapping 
DirectivesProgram

Mapper &
Runtime

GPU Data & Task Placement

Synthesis

Custom Compute Blocks 
(Instructions or Clients)

SMs

Configurable MemoryEfficient NoC



Toward a General Bio-Informatics Accelerator

• GPU Substrate

– Optimized memory subsystem for accessing 

seed tables

– SMs update bins in local memory for filtering

• General Dynamic Programming 

Accelerator

– Variable alphabet (bases, amino acids,…)

– Gapped or ungapped filtering or extension

– GACT-X

– Arbitrary cost function

– Supports genome graphs

– Subset of arrays have traceback memory

• Can do

– Reference-guided assembly

– De-novo assembly

– Whole genome alignment

– Multiple-sequence alignment

– Others…

GPU

SMs

Configurable Memory
Efficient NoC

DP 

Accels
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Conclusion



Summary
• Sequencing technology is scaling, compute performance isn’t
• Many compelling problems in bioinformatics

– Phylogenomics
– Driver mutation for cancer
– Metagenomics

• Problems have enormous complexity (270 CPU years to solve birds)
• Specialized hardware is needed

– Specialization provides efficiency
– parallelization provides performance
– Memory dominates
– Algorithm/Hardware co-design required

• GPUs provide a platform for acceleration
– Can support a general bioinformatics accelerator




